Convegno Annuale ASIC (Associazione Scientifica Italiana di Coniglicoltura)

La coniglicoltura italiana tra Green Deal e PNRR

Strategies to improve management of rabbit reproduction

8th September 2021

Rosa Mª García García Veterinary Faculty Complutense University of Madrid (Spain) E-mail: rosa.garcia@vet.ucm.es https://veterinaria.ucm.es/conerepro

What is the situation where are we?

Balance between the high costs and animal physiology and welafare in the context of the Green deal and circular economy for environment sustainability and to obtain quality products

European

Commission

Attract consumers!!

www.vivus.es

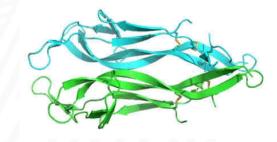
https://thefoodtech.co

#EUGreenDeal #ResearchImpactEU

Rabbit female reproductive challenges and strategies

Low primiparous rabbit performance

Feeding restriction during second pregnancy


https://www.elmolinogetafe.com/

- Ovulation induction by hormonal preparations

Use of ovulating inducing factor Nerve Growth Factor (NGF)

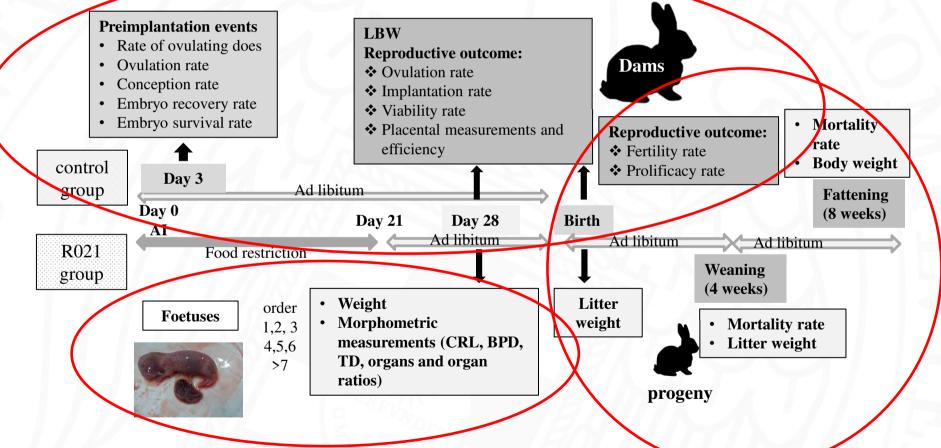
Feeding costs are 50-70% of the total farm costs

Primiparous rabbit females

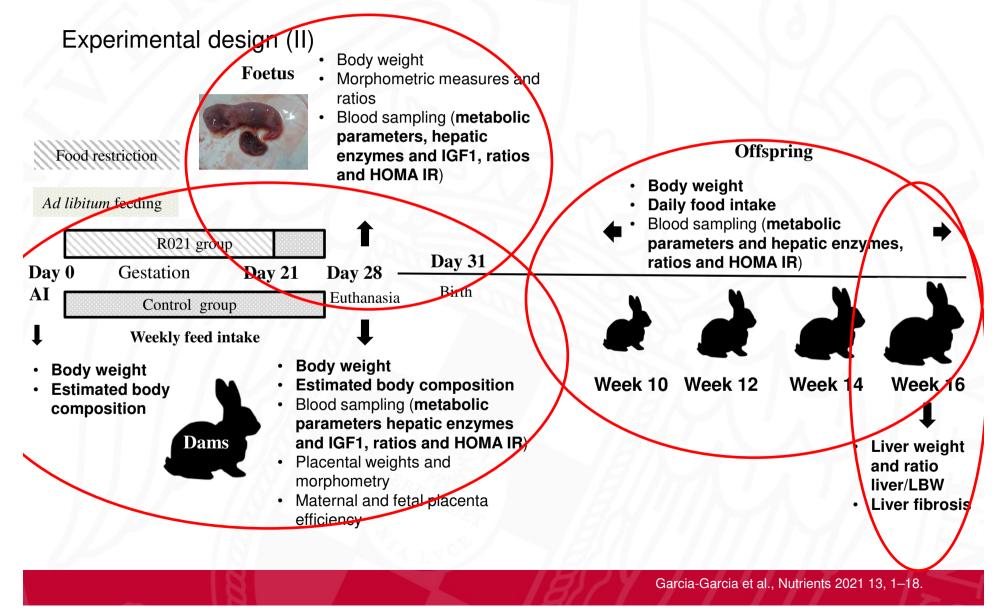
High nutritional requirements (lactation and growth)

Extensive reproductive rhythm (artificial insemination at Day 30 post-partum)

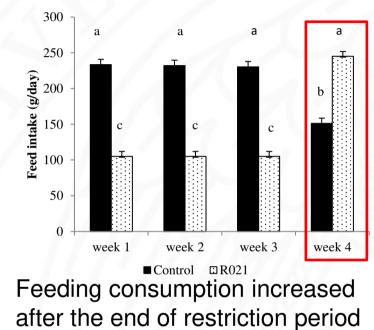
Moderate Maternal Feed Restriction (MFR) during second pregnancy (Day 0-21)


Embryo development, implantation, organogenesis and placenta development takes place Important risk of **fattening** that **impairs pregnancy rate**

Is maternal reproductive outcome affected? Is fetal growth and development and kits growth influenced by MFR?


Experimental design (I)

MFR was set in the 60% of the measured voluntary feed intake of the first pregnancy (105g/day)



Dams

Feeding restriction strategies in primiparous pregnant rabbit females

Food intake

Metabolic parameters

	Control (<i>n</i> = 7)	R021 (<i>n</i> = 7)	p > f
Glucose (mg/dI	L) 119.4 ± 8.29	102.3 ± 8.29	0.1715
Insulin (mU/L)	8.37 ± 2.10	12.34 ± 2.10	0.2078
Ratio glucose/insu	ılin 18.1 ± 6.05	16.2 ± 2.10	0.8308
HOMA IR inde	x^1 2.46 ± 0.52	2.90 ± 0.52	0.5602
TG (mg/dL)	78.6 ± 12.9	88.2 ± 12.9	0.6096
Total cholesterol (m	g/dL) 31.6 ± 4.62	23.9 ± 4.62	0.2597
Ratio TG/choleste	erol 2.97 ± 0.72	4.06 ± 0.72	0.3074
AST(U/L)	58.4 ± 20.3	103 ± 20.3	0.1461
ALT (U/L)	9.14 ± 6.11	23.6 ± 6.11	0.1194
Ratio AST/ALT	6.77 ± 1.32	5.64 ± 1.32	0.5553
IGF1 (ng/mL)	267.9 ± 26.1	296.4 ± 26.1	0.4621

Metabolic status was not affected by restriction

Estimated body composition by bioimpedance

	Contro	Control $(n = 7)$ R021 $(n = 7)$		$P_{\text{time}} > f$	$P_{\rm MFR} > f$	$P_{\text{timexMFR}} > f$	
	Day 0	Day 28	Day 0	Day 28		10	1 1 1
LBW (g)	3990 ± 122.0	4692 ± 122.0	4049 ± 86.6	4608 ± 86.6	0.0001	0.9288	0.1989
Water (%)	58.8 ± 1.75	88.0 ± 1.75	58.8 ± 1.24	86.8 ± 1.24	0.0001	0.6609	0.7218
Ash (%)	3.30 ± 0.05	3.06 ± 0.05	3.30 ± 0.03	3.08 ± 0.03	0.0003	0.8481	0.8036
Lipids (%)	15.4 ± 1.78	11.9 ± 1.78	15.3 ± 1.26	12.1 ± 1.26	0.0835	0.9780	0.9454
Proteins (%)	19.36 ± 0.13	17.6 ± 0.13	19.38 ± 0.09	17.7 ± 0.09	0.0001	0.7102	0.7530
Energy (MJ/kg)	147.0 ± 80.6	955.7 ± 80.6	1144.0 ± 57.0	966.04 ± 57.0	0.0439	0.9518	0.9350

Body composition did not change by maternal feed restriction

Dams

Feeding restriction strategies in primiparous pregnant rabbit females

Preimplantation and preterm events

	Control	R021	P value	
Day 3 post-IA		1	The second	
Ovulating females (%)	100	90	0.336	
Number of CL/ ovary	10.7 ± 1.09	7.42 ± 1.19	0.1870	
Embryo viability (%)	75.4 ± 13.6	70.1 ± 14.4	0.7911	
Day 28 post-IA				
Total number of foetuses	11.00	14.00	0.05	1
Implantation rate (%) ¹	88.91	96.21	0.0001	
Viability rate (%) ²	94.64	90.00	0.34	1
	/////			

¹ (number of viable foetuses/number of CL) x100. CL: corpus luteum, ² (number of viable foetuses/total number of foetuses) x100.

More foetuses and more implantation rate for restricted mothers (to preserve the species and maintain litter size)

Reproductive outcome at delivery

	Control (n=61)	R021 (n=60)	<i>P</i> value
Fertility (%) ¹	73.78	76.67	0.83
Prolificacy		\sim	
Total of newborns	11.55	10.82	0.33
Born alive	11.22	10.58	0.41
Stillborns	0.33	0.24	0.59

1 (number of parturitions/number of AI) x100. AI: artificial insemination

Maternal reproductive outcome was not affected

Morphometric measurements and calculated ratios Control R021 p > f(n = 7)(n = 7)Morphometric measurements Biparietal diameter (mm) 19.4 ± 0.15 19.1 ± 0.13 0.2291 Crown-rump length (mm) 99.3 ± 0.68 0.1998 100.7 ± 0.76 Thoracic diameter (mm) 20.9 ± 0.30 20.6 ± 0.27 0.4534 Fetus weights 0.2733 Total (g) 39.4 ± 0.74 38.2 ± 0.67 0.3245 Head (g) 9.45 ± 0.15 9.23 ± 0.13 27.8 ± 0.52 0.4302 Trunk (g) 28.5 ± 0.59 Liver (g) 2.40 ± 0.08 0.3940 2.52 ± 0.10 1.90 ± 0.05 0.8697 Gut (g) 1.89 ± 0.06 Brain (g) 0.91 ± 0.02 0.93 ± 0.01 0.4239 Weight ratios 2.48 ± 0.05 0.1385 Brain ratio (%) 2.36 ± 0.06 Liver ratio (%) 0.7288 6.40 ± 0.17 6.49 ± 0.14 Brain: Liver ratio (%) 37.9 ± 1.98 39.9 ± 1.66 0.4546

Foetuses

Morphometric measurements of foetus and placenta development was not affected by feeding restriction

Metabolic parameters

Insulin and triglycerides (TG) profile was impaired by feeding restriction

		Control (<i>n</i> = 30)	R021 ($n = 30$)	<i>p</i> > f
	Glucose (mg/dL)	46.26 ± 3.16	49.70 ± 3.99	0.5028
	Insulin (mU/L)	3.80 ± 0.77	7.28 ± 0.87	0.0063
2	Ratio insulin/glucose	0.10 ± 0.18	0.15 ± 0.02	0.0600
7	HOMA IR index 1	0.40 ± 0.09	0.87 ± 0.07	0.0001
10	TG (mg/dL)	95.00 ± 4.98	112.44 ± 6.07	0.0347
Т	otal cholesterol (mg/dL)	112.39 ± 4.24	105.91 ± 5.38	0.3500
	Ratio TG/cholesterol	0.85 ± 0.05	0.98 ± 0.06	0.0940
	AST (U/L)	33.27 ± 2.55	33.28 ± 2.84	0.9977
/	IGF1 (ng/mL)	123.88 ± 7.45	140.82 ± 8.92	0.1564

Offspring performance Control (n=61) R021 (n=60) P value Birth Litter weight (g) 607.44±121.3 637.14±102.2 0.31 Weaning (4 weeks) Weaned kits (n) 10.4±0.15 9.86±0.15 0.01 Litter weight (g) 6122 ± 189 5787 ± 183 0.2087 Mortality rate (%) 4.3±1.14 4.6±1.11 0.6865 Fattening (8 weeks) Body weight (g) 2295.36±45.60 2204.19±35.11 0.1190 Mortality rate (%) 1.0 0 0

Offspring

Weight and viability were not influenced by feed restriction but more kits were weaned from females of the control group

week 10

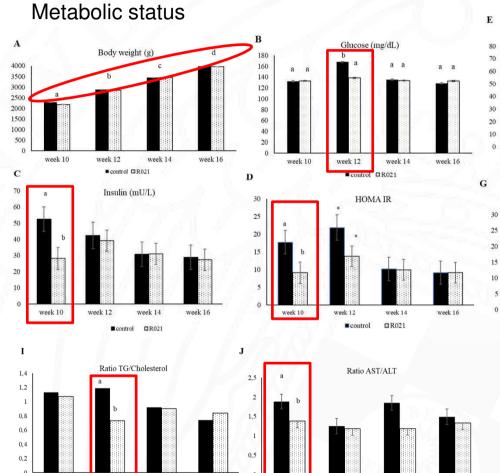
week 12

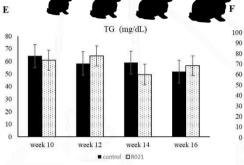
week 14

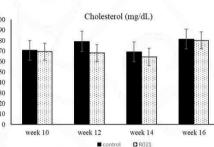
RO21

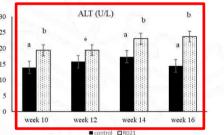
week 16

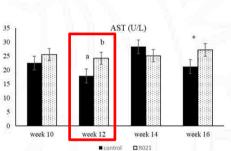
week 10

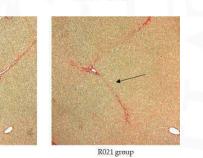

week 12


control B021


week 14


Feeding restriction strategies in primiparous pregnant rabbit females


Female offspring


н

Control group

(a)

(b)

MFR affects mainly hepatic enzymes and liver fibrosis but weight was not impaired

week 16

Garcia-Garcia et al., Nutrients 2021 13, 1-18.

Summary

Maternal feed restriction during the less demanding part of gestation could be an interesting strategy to avoid excessive fattening of primiparous females AI under extensive reproductive rythm in order to reduce feeding cost without impairment of dam reproductive outcome and general offspring performace

Use of nerve growth factor (NGF) for ovulation induction

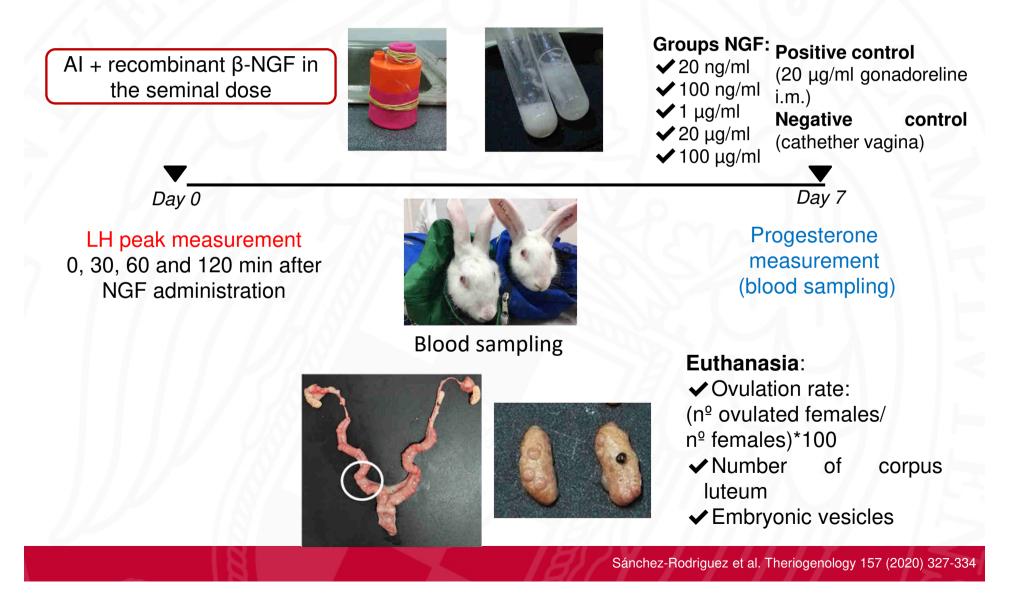
Different hormonal preparations (analogues GnRH) to induce ovulation in rabbit does by intramuscular via

Avoid hormones in reproduction and more friendly methods are required

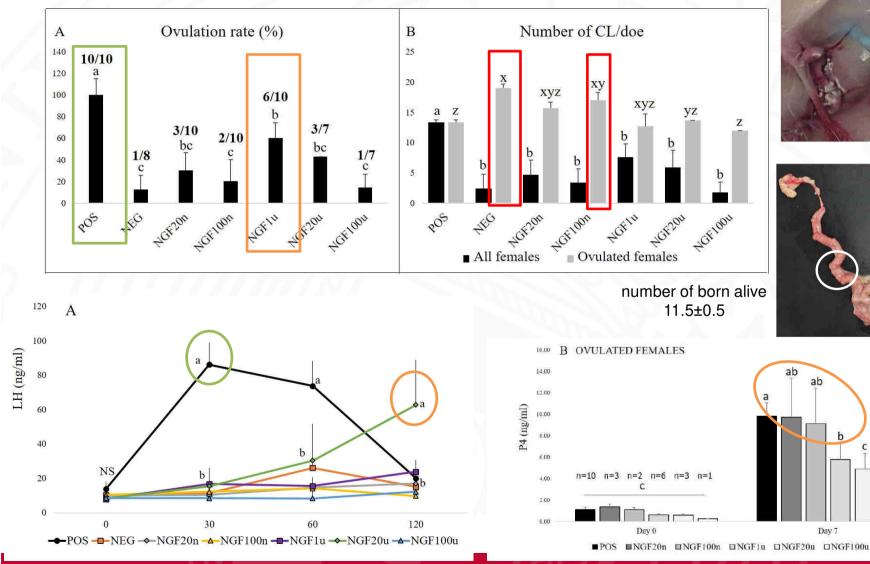
NGF is present in seminal plasma and it is an ovulation induction factor in other reflexively ovulators as camelids

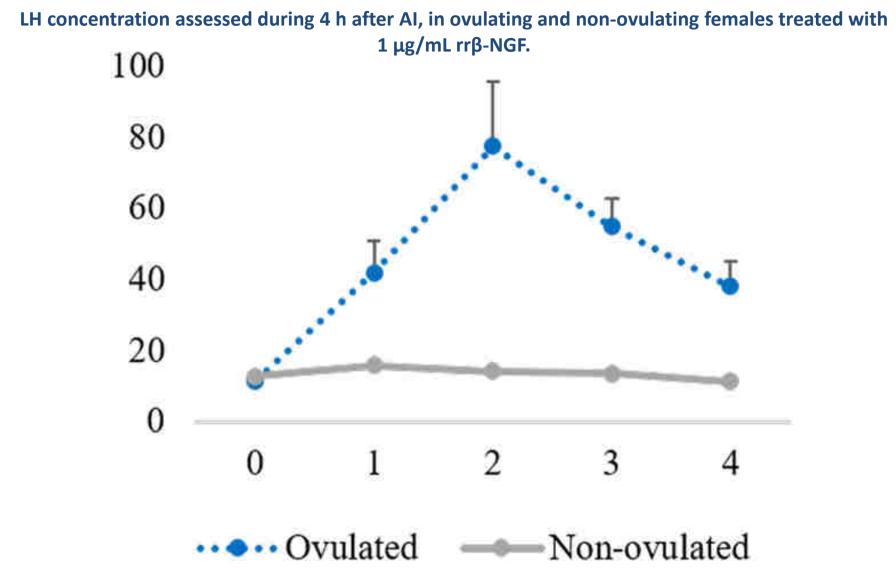
Addition of NGF to the seminal dose would improve working time in the farm at AI momment and could be more physiological for the animals

https://hgh-therapy-rx.com/



https://onlinelibrary.wiley.com


Use of nerve growth factor (NGF) for ovulation induction



X

Use of nerve growth factor (NGF) for ovulation induction

Sánchez-Rodriguez et al. Theriogenology 157 (2020) 327-334

Sanchez-Rodriguez A, Abad P, Arias-Alvarez M, Rebollar PG, Bautista JM, et al. (2019) Recombinant rabbit beta nerve growth factor production and its biological effects on sperm and ovulation in rabbits. PLOS ONE 14(7): e0219780. https://doi.org/10.1371/journal.pone.0219780 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219780

Use of nerve growth factor (NGF) for ovulation induction

Mores studies should be done to improve the use of NGF in the seminal dose to replace hormonal treatments administered by intramuscular via

https://universoabierto.org/

Strategies to improve management of rabbit reproduction

UCM Group Physiology of Reproduction in Lagomorpha

Dr. Pilar G. Rebollar Dr. Pedro L. Lorenzo Dr. María Arias Dr. Luis Revuelta Dr. Ana Sánchez