

Convegno ASIC 2016 11th WRC: Inviati speciali in Cina 30 settembre 2016, Padova

11th WORLD RABBIT CONGRESS, 15-18 June 2016, Qingdao, China

8. Quality of Products

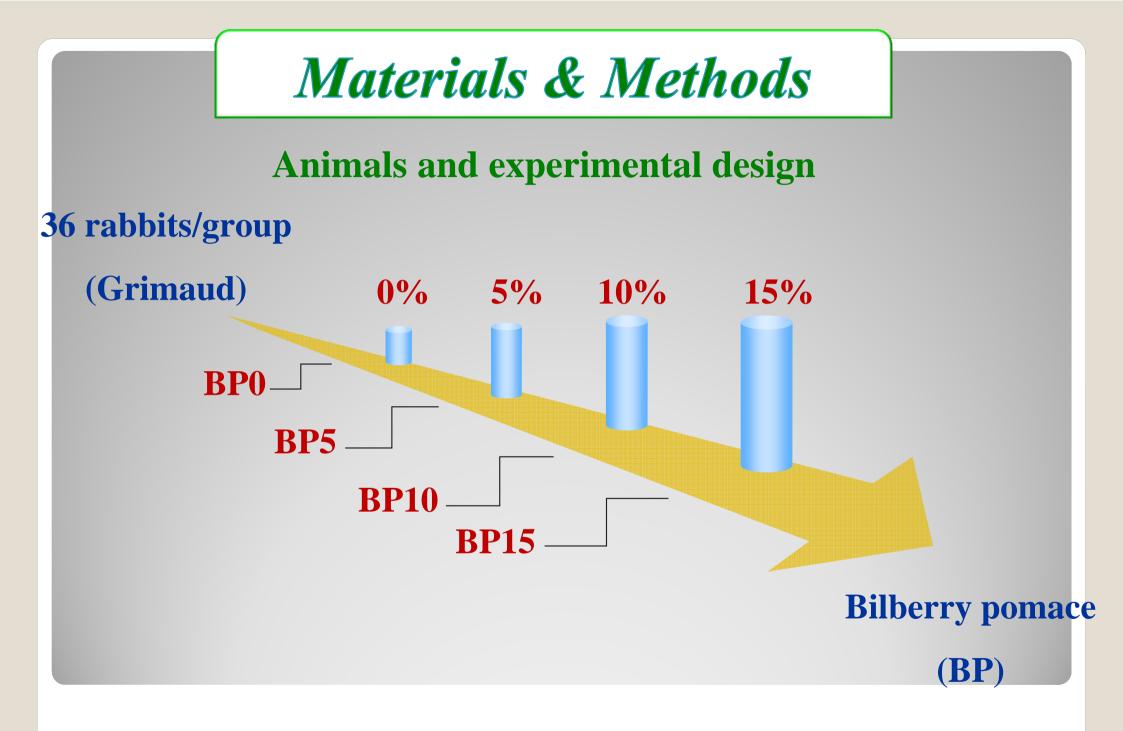
Sihem Dabbou Università degli Studi di Torino

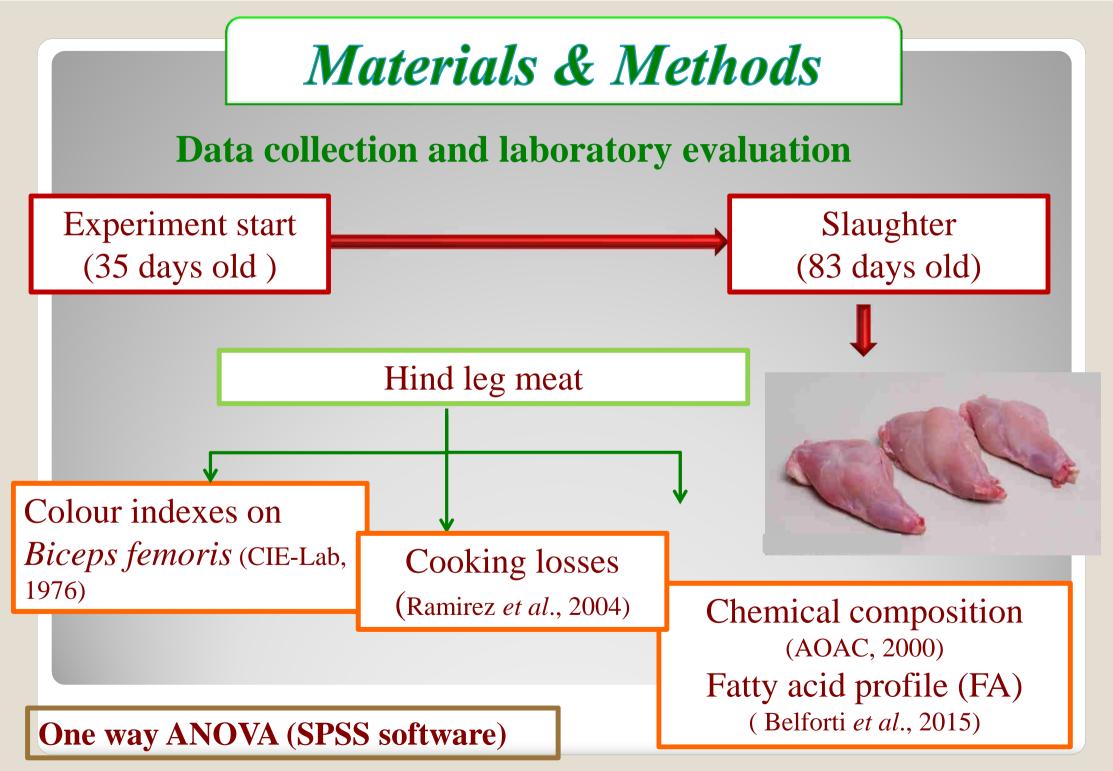
1st Research study

Inclusion of bilberry pomace in growing rabbit diets improves the nutritional quality of fat in the *Biceps femoris* muscle

<u>Dabbou</u> S., Renna M., Lussiana C., Gai F., Rotolo L., Kovitvadhi A., Brugiapaglia A., Helal A. N., Zoccarato I., Gasco L.

Laboratory of Bioresources, Integrative Biology and Valorisation, Higher Institute of Biotechnology of Monastir, Tunisia


Department of Agricultural, Forest and Food Science, University of Turin, Italy


Institute of Science of Food Production, National Research Council, Turin, Italy

Objectives

To evaluate the effects of bilberry pomace inclusion in diets for growing rabbits on physico-chemical characteristics and fatty acids profile of hind leg meat.

Quality traits of the Biceps femoris muscle

	BP0	BP5	BP10	BP15	Р
L*	53.5	55.4	55.0	55.1	0.30
a*	-1.02	-1.21	-1.46	-1.55	0.45
b*	3.18	3.58	3.59	3.40	0.68
Cooking losses, %	23.5	23.7	22.7	23.3	0.74

No significant effects of BP were reported on meat quality traits

Chemical composition of hind leg meat

	BP0	BP5	BP10	BP15	Р
Water (%)	74.1	74.2	73.6	73.1	0.05
Protein (%)	21.8	21.3	21.8	22.2	0.06
Ether extract (%)	2.22°	-2.68 ^b	2.90 ^{ab}	3.15 ^a	< 0.001
Ash (%)	1.33	1.34	1.34	1.33	0.46

Ether extract significantly increased following increasing BP inclusion levels in the diets

Fatty acid profile (g/100g of total FAs)

	BP0	BP5	BP10	BP15	Р
C16:0	32.6 ^a	28.9 ^b	28.6 ^b	25.6 ^c	< 0.001
C16:1c	5.76 ^a	4.78 ^b	4.45 ^b	4.00 ^b	0.005
C18:0	7.31 ^a	6.65 ^b	7.08 ^{ab}	6.78 ^b	0.021
C18:1c9	25.0 ^a	24.1 ^{ab}	23.5 ^b	23.1 ^b	< 0.01
C18:2n6	17.8 ^c	21.9 ^b	21.9 ^b	23.7 ^a	< 0.001
C18:3n3	2.19 ^d	4.91°	6.48 ^b	9.23 ^a	< 0.001

A significant modifications in the proportion of the majority of individual detected fatty acids.

Fatty acid profile (g/100g of total FAs)

	BP0	BP5	BP10	BP15	P
ΣSFA	44.5 ^a	39.8 ^b	39.6 ^b	36.1°	< 0.001
ΣΜυγΑ	34.5 ^a	32.1 ^b	31.0 ^{bc}	29.9°	< 0.001
ΣΡυγΑ	21.0 ^c	28.1 ^b	29.4 ^b	34.0 ^a	< 0.001
Σn3	2.20 ^d	4.91°	6.48 ^b	9.23 ^a	< 0.001
$\Sigma n6 / \Sigma n3$	8.66 ^a	4.79 ^b	3.59°	2.70 ^d	< 0.001
Atherogenecity index	• 0.83ª	0.67 ^b	0.65 ^b	0.56°	< 0.001
Thrombogenicity index	1.30 ^a	0.91 ^b	0.83°	0.63 ^d	< 0.001

≻A decrease of SFA and MUFA.

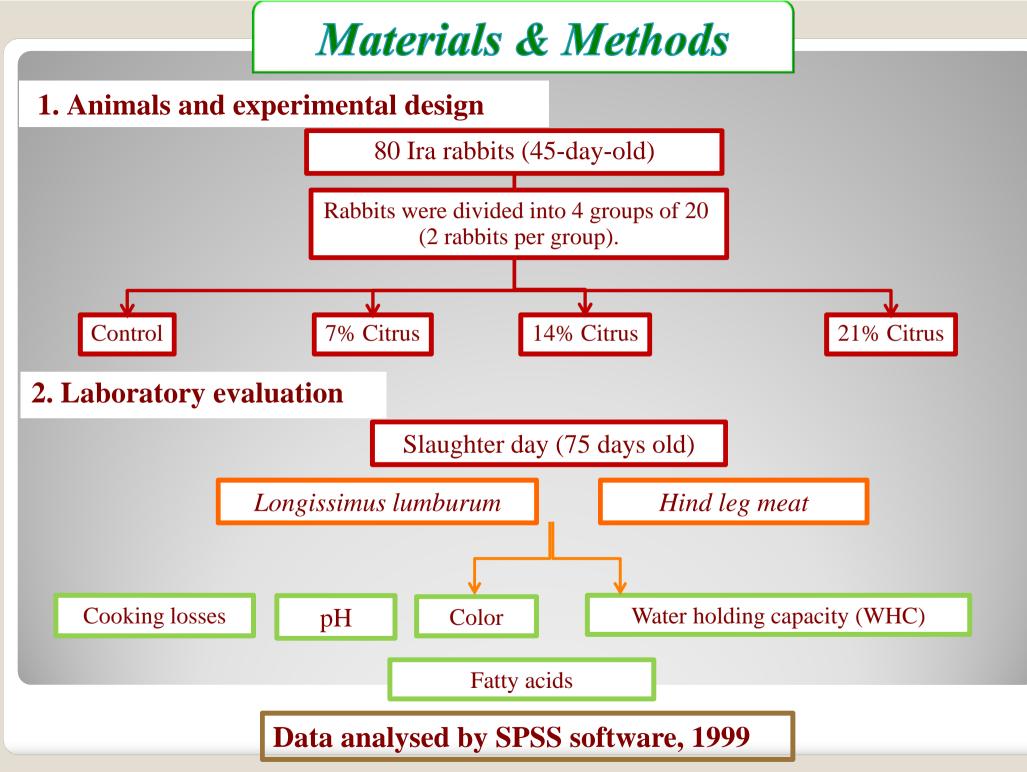
≻An increase of PUFA and n3 FA.

> A decrease of n6/n3 FA ratio, atherogenicity and thrombogenicity indexes.

Conclusion

Including and increasing of bilberry pomace in growing rabbit diets increases ether extract content and improves the nutritional quality of fat for human consumption.

2nd Research study


EFFECTS OF DIETS WITH INCREASING LEVELS OF CITRUS PULP ON MEAT QUALITY AND FATTY ACID COMPOSITION OF GROWING RABBITS

He Z. F., Xia Q. Y., Li H. J.

College of Food Science, Southwest University, Chongqing, China

Objectives

TO EVALUATE THE USE OF CITRUS PULP IN RABBIT DIET AND THE EFFECT ON MEAT QUALITY, WITH AN EMPHASIS ON INTRAMUSCULAR FATTY ACID COMPOSITION

Quality traits of the Longissimus lumburum muscle

	Control	Citrus 7%	Citrus 14%	Citrus 21%
рН	5.79 ^a	5.97°	6.01 ^d	5.19 ^b
L*	55.92±1.51	56.51±2.03	58.13±0.62	56.42±2.45
a*	$0.60{\pm}0.04^{a}$	0.36±0.02 ^b	0.43 ± 0.06^{b}	0.40 ± 0.08^{b}
b *	10.17±0.41	10.21±0.30	10.61±0.34	10.78±0.47
WHC (%)	73.66±0.89ª	72.23±1.05 ^{ab}	71.05 ± 0.64^{b}	71.01±0.82 ^b
Cooking losses (%)	17.44±0.55 ^a	19.76±0.26 ^b	23.66±0.49°	24.00±0.82°

>Higher pH values in the citrus pulp groups.

≻L* and b* were not affected by diet.

Quality traits of the *Hind leg* muscle

	Control	Citrus 7%	Citrus 14%	Citrus 21%
pH	6.14 ^a	6.17 ^b	6.17 ^b	6.19 ^c
L*	58.64±1.66	57.53±2.17	60.09±0.72	60.09±2.12
a*	-0.41±0.08 ^a	-0.47±0.02 ^b	-0.51±0.06 ^b	-0.87±0.01°
b*	9.35±0.29	9.78±0.44	9.31±0.34	9.62±0.26
WHC (%)	72.80±0.26ª	71.23±1.25 ^{ab}	69.16±0.72 ^b	68.72±0.82 ^b
Cooking losses (%)	12.31±0.10 ^a	15.16±0.34 ^b	19.39±1.01°	20.05±0.62°

≻Higher pH values in the citrus pulp groups.

≻L* and b* were not affected by diet.

Cooking losses values were higher in the citrus pulp groups.

Fatty acid content of the Longissimus lumburum muscle

	Control	Citrus 7%	Citrus 14%	Citrus 21%
C16:0	27.45±0.46	27.37±0.10	26.98±0.22	26.89±0.18
C18:1n-9	19.18±0.08 ^a	18.28 ± 0.18^{b}	17.37±0.12°	17.64±0.15°
C18:2n-6	24.65±0.31 ^a	24.50±0.12 ^{ab}	23.91±0.25 ^b	23.83±0.13b
C18:3n-3	1.34±0.03 ^a	1.21±0.02 ^b	1.48±0.07°	1.77 ± 0.04^{d}
C20:4n-6	7.56±0.12 ^a	8.55±0.21 ^b	9.34±0.33°	9.01±0.37°
C20:5n-3	1.84±0.03 ^a	1.99 ± 0.04^{b}	2.03±0.09 ^b	1.90±0.07ª
SFA	40.45±0.20 ^a	39.89±0.14 ^b	39.73±0.44 ^b	39.50±0.18 ^b
PUFA	38.06±0.18 ^a	39.44 ± 0.26^{b}	40.35±0.39°	39.64±0.22 ^b
n-6/n-3	6.54±0.15 ^a	6.52±0.09 ^a	5.55±0.02 ^b	5.83±0.07°

A significant modifications in the proportion of the majority of individual detected

fatty acids.

≻An increase of C18:3n3.

≻A decrease of SFA and an increase of PUFA content.

30/09/2016

Fatty acid content of the *Hind leg* muscle

	Control	Citrus 7%	Citrus 14%	Citrus 21%
C16:0	28.25±0.06ª	27.55±0.28 ^b	27.06±0.14 ^b	27.32±0.48 ^b
C18:1n-9	18.18±0.05 ^a	18.18±0.22 ^a	16.47±0.08°	17.77±0.14 ^b
C18:2n-6	24.66±0.18 ^a	25.33±0.12 ^b	26.05±0.17 ^b	25.36±0.27 ^b
C18:3n-3	1.50±0.06 ^b	1.60±0.02°	1.50±0.05 ^b	1.28±0.03 ^a
C20:4n-6	6.08±0.19 ^a	7.19 ± 0.17^{b}	8.35±0.25°	6.91±0.18 ^b
C20:5n-3	1.88±0.06 ^b	1.54±0.04ª	2.00±0.09°	2.16±0.10°
SFA	41.72±0.25 ^a	40.34±0.32°	39.70±0.14 ^d	41.04±0.28 ^b
PUFA	37.59±0.39 ^a	38.76 ± 0.56^{b}	41.99±0.28°	38.45±0.43 ^{ab}
n-6/n-3	5.89±0.11ª	6.94 ± 0.09^{b}	5.91±0.10 ^a	6.97±0.14 ^b

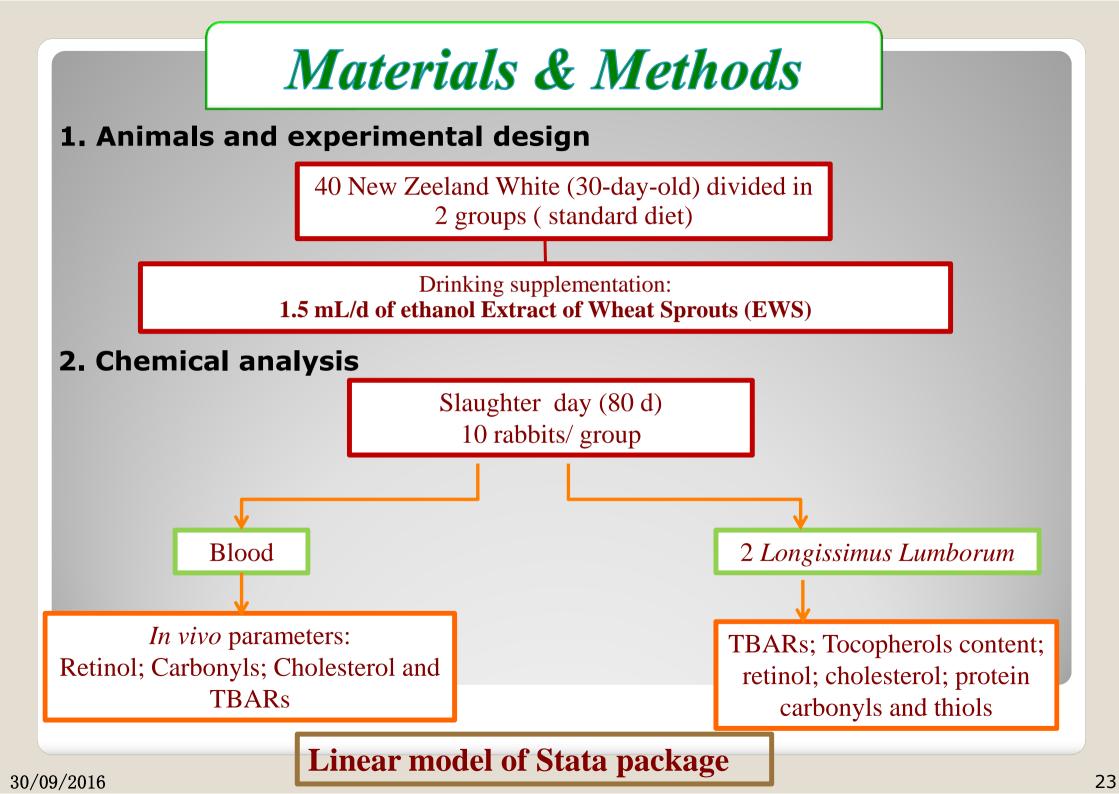
> A significant modifications in the proportion of the majority of individual detected fatty acids.

≻A decrease of SFA and an increase of PUFA content in citrus 14% group.

Conclusion

The use of citrus pulp in growing rabbit diets had no negative effect on meat quality traits, increases PUFA content and decrease SFA content.

DIETARY SUPPLEMENTATION OF WHEAT SPROUTS EXTRACT AND OXIDATIVE STATUS OF GROWING RABBIT


Mattioli S., Castellini C., Martino M., Marsili V., Dal Bosco A,

Department of Agricultural, Food and Environmental Science, University of Perugia – Borgo 20 Giugno, 74. 06100 Perugia, Italy. Department of Chemistry, Biology and Biotechnology, University of Perugia – Via Elce di Sotto, 3. 06100 Perugia, Italy.

Objectives

TO INVESTIGATE THE EFFECT OF ETHANOL EXTRACT OF WHEAT SPROUTS ON *IN VIVO* OXIDATIVE STATUS AND MEAT QUALITY OF GROWING RABBIT.

Results

In vivo bioactive compounds and oxidative status of rabbits

	Control	EWS	SEM	P
Retinol (nmol/mL)	10.43	7.79	9.96	0.062
a-Tocopherols (nmol/mL)	0.37	0.27	0.09	0.017
δ-Tocopherols (nmol/mL)	0.05	0.08	0.04	0.082
Carbonyls (nmol mg proteins)	0.16	0.17	0.09	0.258
TBARs (nmol MDA/mL)	59.5	43.2	4.58	0.002
Cholesterol (mg/dL)	24.4	18.9	1.01	0.020

>EWS improved the plasma lipid oxidative status.

>Oxidation level of protein was not affected.

> Cholesterol concentration was lower in EWS rabbits.

Bioactive compounds and oxidative status of *Longissimus Lumburum* muscle

	Control	EWS	SEM	Р
Retinol (ng/g)	140,7	179.0	21.9	0.001
α-Tocopherols (ng/g)	96.9	125.7	12.5	0.007
γ -Tocopherols (ng/g)	1.19	0.85	0.14	0.028
δ-Tocopherols (ng/g)	1.94	1.00	0.18	0.035
α-Tocotrienol (ng/g)	2.07	0.30	0.20	0.003
γ -Tocotrienol (ng/g)	9.33	13.4	2.21	0.015
Thiols (µmol SH-group/g wet tissue	8.10	6.92	105	0.047
Carbonyls (nmol mg proteins)	0.49	0.25	0.12	0.027
TBARs (gMDA/g)	0.12	0.10	0.01	0.020
Cholesterol (mg/100g)	47.0	42.1	2.84	0.013

>Better oxidative status of rabbit drank EWS.

>Oxidation level of protein and lipid were lower.

> Cholesterol concentration was lower in EWS rabbits.

Conclusion

The administration of EWS in growing rabbit

Jmproved their health status (reducing plasma TBARS)

→ Improved meat quality (increasing the antioxidant content of meat)

→ Reducing cholesterol concentration in plasma and meat

11th WORLD RABBIT CONGRESS 第十一百百万家免科学大会

AND AND AND

50 000

100

Thanks for your attention

AN NUM